

Swiss Confederation

Bundesamt für Landestopografie swisstopo Office fédéral de topographie swisstopo Ufficio federale di topografia swisstopo Federal Office of Topography swisstopo

www.swisstopo.ch

DEFORMATION MODEL FOR EUROPE: APPLICATION OF THE LEAST-SQUARE COLLOCATION

REBEKKA STEFFEN¹, JULIETTE LEGRAND², HOLGER STEFFEN¹, MARTIN LIDBERG¹, AMBRUS KENYERES³, ELMAR BROCKMANN⁴, SIMON LUTZ⁴

- I LANTMÄTERIET
- 2 ROYAL OBSERVATORY OF BELGIUM
- 3 SATELLITE GEODETIC OBSERVATORY HUNGARY
- 4 FEDERAL OFFICE OF TOPOGRAPHY SWISSTOPO

- One of the goals of EUREF (Regional Reference Frame Sub-Commission for Europe) is the development of a deformation model for Europe
 - Estimation of a dense velocity grid
 - Using GNSS-based station velocity solutions

- One of the goals of EUREF (Regional Reference Frame Sub-Commission for Europe) is the development of a deformation model for Europe
 - Estimation of a dense velocity grid
 - Using GNSS-based station velocity solutions
 - For example: "EPN densification" by Kenyeres
 - Regional weekly GNSS solutions (SINEX format) combined to weekly solutions, and station velocities estimated by rigorous stacking of the combined weekly solutions in the CATREF software
 - Data cleaning is an important part of the process and stations with unrealistic velocities (mostly due to short time series in the 2 3 years domain) are removed
 - More information: http://epncb.oma.be/_densification/
 - Dataset "EDV14_ENEU_v3.filt" from August 8th, 2018, is used in the following
 - Dataset is in ETRF2000

- One of the goals of EUREF (Regional Reference Frame Sub-Commission for Europe) is the development of a deformation model for Europe
 - Estimation of a dense velocity grid
 - Using GNSS-based station velocity solutions
 - For example: "EPN densification" by Kenyeres
 - Regional weekly GNSS solutions (SINEX format)
 combined to weekly solutions, and station velocities
 estimated by rigorous stacking of the combined weekly
 solutions in the CATREF software
 - Data cleaning is an important part of the process and stations with unrealistic velocities (mostly due to short time series in the 2 3 years domain) are removed
 - More information: http://epncb.oma.be/_densification/
 - Dataset "EDV14_ENEU_v3.filt" from August 8th, 2018, is used in the following
 - Dataset is in ETRF2000

COLLOCATION (SHORT SUMMARY)

- Velocity data are filtered and interpolated (prediction) using least-square collocation (LSC, based on Moritz, 1980)
 - l = s + n
 - \blacksquare l observations
 - s signals
 - \blacksquare n noise
- Signal and noise can be separated and the signal and the corresponding uncertainty can be obtained at observation points or new points
- Calculation involves the estimation of covariance matrices \rightarrow depends only on the distance between the points and the choice of the covariance function $\rightarrow C_0$ (signal covariance) and d_0 (correlation length) have to be determined
- All known information should be reduced from the observations before covariance calculation and collocation are applied (e.g., background model, mean value)
 → added afterwards again

BACKGROUND MODEL

Background model is reduced from observational data → theoretical GIA (Glacial Isostatic Adjustment) model rotated into ETRF2000 (same reference frame as the GNSS data)

COVARIANCE FUNCTION

Gauss-Markov 1st order used: $K(d) = C_0 \cdot e^{-d/d_0}$ (covariances are normed)

COVARIANCE FUNCTION

Gauss-Markov 1st order used: $K(d) = C_0 \cdot e^{-d/d_0}$ (covariances are normed)

COLLOCATION – FILTERING

COLLOCATION – FILTERING

Red – original data

Black - collocated (filtered) data

Plate boundaries included → distance between

stations on different plates is increased

 → but distance for stations on the same plate is kept the same

Plate boundaries included

→ distance between stations on different plates is increased

 → but distance for stations on the same plate is kept the same

Collocation without plate boundaries

Collocation with plate boundaries

Collocation without plate boundaries

Collocation with plate boundaries

Red – original data; Black – collocated (filtered) data

COLLOCATION – EU DENSE VELOCITIES

- A different dataset can be used as well:
 - "EU Dense Velocities" by Lutz & Brockmann
 - Some 25 velocity solutions provided (including the EPN densification) in well defined reference frames (preferably ETRF2000) compared and combined
 - Data cleaning is ongoing
 - More information: http://pnac.swisstopo.admin.ch/divers/dens_vel/index.html
 - Dataset "VELF_20180911.STA" from September 12th,
 2018, is used in the following
 - Dataset is in ETRF2000

COLLOCATION – EU DENSE VELOCITIES

COLLOCATION – COMPARISON

EPN densification

EU Dense Velocities

COLLOCATION – COMPARISON

 Difference between collocated velocity fields obtained from EPN densification and EU Dense Velocities

Entire area								
	Min	Max	Mean	Std	RMS			
EW	-5.386	12.660	-0.027	0.904	0.905			
NS	-10.002	3.594	-0.345	0.528	0.631			

EPN densification – EU Dense Velocities

COLLOCATION - COMPARISON

 Difference between collocated velocity fields obtained from EPN densification and EU Dense Velocities

Entire area								
	Min	Max	Mean	Std	RMS			
EW	-5.386	12.660	-0.027	0.904	0.905			
NS	-10.002	3.594	-0.345	0.528	0.631			
Central Europe								
EW	-2.505	1.946	-0.030	0.252	0.254			
NS	-2.652	2.777	-0.037	0.329	0.331			

EPN densification – EU Dense Velocities

COLLOCATION - COMPARISON

 Difference between collocated velocity fields obtained from EPN densification and EU Dense Velocities

Entire area								
	Min	Max	Mean	Std	RMS			
EW	-5.386	12.660	-0.027	0.904	0.905			
NS	-10.002	3.594	-0.345	0.528	0.631			
Germany								
EW	-0.583	0.698	-0.003	0.074	0.074			
NS	-0.244	0.049	-0.007	0.033	0.034			
Italy								
EW	-5.386	1.946	0.021	0.667	0.667			
NS	-1.778	3.594	0.208	0.756	0.784			

EPN densification – EU Dense Velocities

SUMMARY

- Deformation model (velocity grid) for Europe obtained
- Collocation uses both horizontal components at the same time as well as including their correlation (follows Legrand, 2007)
- Plate boundaries implemented in collocation → provides better estimates of the horizontal velocities
- Vertical component can be also added in the collocation procedure (not shown here)
- Uncertainties can be calculated as well (formal standard error of the LSC)
- Outlook:
 - Implementing non-stationarity in covariance calculation
 - Increasing grid density as well as using high-resolution coastlines to cover all areas on land in Europe
 - Run cross-validation to obtain an external estimate of the uncertainty

THANK YOU FOR YOUR ATTENTION!

